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Abstract. Discretisation errors in two-flavour lattice QCD with Wilson quarks and DBW2 gauge action are
investigated by comparing numerical simulation data at two values of the bare gauge coupling. Both non-zero-
and zero-twisted-mass values are considered. The results, including also data from simulations using theWil-
son plaquette gauge action, are compared to next-to-leading order chiral perturbation theory formulas.

1 Introduction

The singular point of QCD at vanishing quark masses
is distorted in Wilson-type lattice formulations: as a re-
sult of lattice artefacts, in the region of small quark
masses an extended phase structure is developed. This
phase structure can be predicted and classified in chi-
ral perturbation theory (ChPT) [1] if lattice artefacts are
taken into account [2]. If, in addition to the usual quark
mass parameter, a twisted quark mass is introduced [3, 4]
then in the plane of untwisted and twisted quark mass
a first order phase transition line with second order end-
points appears. Depending on the sign of the leading term
representing lattice artefacts, the first order phase tran-
sition line is either on the untwisted quark mass axis
(“Aoki phase scenario” [3]) or perpendicular to it (“normal
scenario”) [5–7].
In numerical simulations it pays off to try to reduce lat-

tice artefacts at fixed (non-vanishing) lattice spacing by an
appropriate choice of the lattice action. An important is-
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sue in this respect is to bring the phase structure at small
quark masses as close as possible to the point-like singu-
larity appearing in the continuum limit. In fact, the strong
first order phase transition observed earlier in numerical
simulations with Wilson-type quarks [8–10] presents a se-
rious obstacle for QCD simulations with light quarks.
In previous work we systematically investigated the

phase structure of lattice QCD with twisted-mass Wilson-
type quarks (for a recent review see [11]). In [12] we have
shown that at lattice spacings near a � 0.2 fm the phase
structure with Wilson quarks and Wilson plaquette gauge
action is consistent with the “normal scenario” of ChPT.
This differs from the situation in the strong coupling
regime, where the “Aoki phase scenario” has been previ-
ously observed [13].
A consequence of the “normal scenario” is that for fixed

gauge coupling (β) the mass of charged pions have a pos-
itive lower bound (mminπ ). The numerical simulation data
in [12] have shown that this lower bound is at a � 0.2 fm
quite high, namely about 600MeV. Such a high lower
bound would prohibit the study of light quarks. There-
fore, an important question is the behaviour of this lower
bound as a function of the gauge coupling (or lattice spac-
ing) towards the continuum limit. In a subsequent paper
it has been shown [14] that, as expected, the lower bound
becomes clearly smaller for decreasing lattice spacing. Its
decrease in the range 0.20 fm≥ a≥ 0.14 fm is roughly con-
sistent with the prediction of next-to-leading order (NLO)
ChPT [2, 5–7, 15], namely mminπ ∝ a (at aµ = 0). A min-
imal pion mass of mminπ � 300MeV is estimated to occur
near a≈ 0.07–0.10 fm, but this estimate is rather uncertain
and has to be checked in future simulations if the Wilson
gauge action ought to be used. The question arises whether
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one could lower mminπ by a suitable change of the lattice
action.
An early observation by the JLQCD Collaboration has

been [9] that the strength of the first order phase transition
near zero quark mass is sensitive to a change of the gauge
action. Following this hint, we have shown in a previous
paper [16] that combining two flavours (Nf = 2) of Wilson
quarks with the DBW2 gauge action [17] leads to a phase
structure near zero quark mass with substantially weaker
first order phase transition. As a consequence, the minimal
pion mass is at least by a factor of two lower compared to
the plaquette gauge action at similar lattice spacings.
This implies that numerical simulations with light

quarks become possible on coarser lattices and hence with
much less computational costs if the DBW2 gauge action
is used. Of course, for the choice of the gauge action also
other criteria may be relevant. For instance, it has been re-
ported in quenched studies [18, 19] that in some quantities
strong scale breaking effects appear if the DBW2 action
is used. Another problem could be the late convergence of
lattice perturbation theory, implied by the results of the
QCDSF Collaboration [20].
In general, the question of the scaling behaviour of the

results obtained by a given lattice action is very import-
ant. In case of the Wilson twisted-mass formulation of
lattice QCD it has been shown [21] that the leading lattice
artefacts are of O(a2) if the bare quark masses are appro-
priately tuned. Detailed investigations have shown [22–24]
that in the quenched approximation excellent scaling be-
haviour can be achieved, indeed, also at light quarkmasses.
The same question in the full theory with dynamical
quarks is obviously very important.
In the present paper we perform first exploratory scal-

ing tests for the combination of Wilson fermion lattice
action with the DBW2 gauge action by comparing numer-
ical simulation data at two values of the gauge coupling,
namely β = 0.67 and β = 0.74. We consider data points
with both vanishing and non-vanishing value of the twisted
mass. Moreover, since one can extract useful information
on multiplicative renormalisation factors from the depen-
dence of matrix elements on the twist angle in the plane of
untwisted and twisted quark mass, we exploit this method
and derive from our simulation data the values of ZV ,
ZA and ZP /ZS. In addition, we compare the NLO-ChPT
formulas of [5–7, 15, 25] to the results of the numerical
simulations. For comparison, ChPT fits of the data ob-
tained by the Wilson plaquette gauge action [14] are also
considered.
The outline of the paper is as follows: in the next sec-

tion, after specifying the lattice action and the simula-
tion algorithms, the numerical simulation runs are dis-
cussed and some scaling tests are presented. Section 3 is
devoted to a detailed description of the results on the twist
angle in the plane of untwisted and twisted quark mass
together with an explanation how the aforementionedmul-
tiplicative renormalisation Z-factors can be determined.
The knowledge of the twist angle and Z-factors makes it
possible to obtain results on physical quantities, such as
the quark mass and the pion decay constant. In Sect. 4 the
ChPT fits of the data with DBW2 gauge action are pre-

sented. Section 5 contains a discussion and a summary. In
an appendix alternative chiral fits of the DBW2 data are
shown and compared to similar ChPT fits of Wilson pla-
quette data.

2 Numerical simulations

The lattice action and simulation algorithms are defined
here for the reader’s convenience. The notation is similar to
the one in [16].

2.1 Lattice action and simulation algorithms

We apply for quarks the lattice action of Wilson fermions,
which can be written as

Sq =
∑

x

{(
χx[µκ+iγ5τ3aµ]χx

)

−
1

2

±4∑

µ=±1

(
χx+µ̂Uxµ[r+γµ]χx

)}
. (1)

Here the (“untwisted”) bare quark mass in lattice units is
denoted by

µκ ≡ am0+4r=
1

2κ
, (2)

r is the Wilson parameter, set in our simulations to r = 1,
am0 is another convention for the bare quark mass in
lattice units and κ is the conventional hopping parame-
ter. The twisted mass in lattice units is denoted here by
aµ. (This differs from the notation in [16] where µ has
been defined without the lattice spacing factor a in front.)
Uxµ ∈ SU(3) is the gauge link variable and we also defined
Ux,−µ = U

†
x−µ̂,µ and γ−µ =−γµ.

For the SU(3) Yang–Mills gauge field we apply the
DBW2 lattice action [17] which belongs to a one-parameter
family of actions obtained by renormalisation group con-
siderations. Those actions also include, besides the usual
(1× 1) Wilson loop plaquette term, planar rectangular
(1×2) Wilson loops:

Sg = β
∑

x

(
c0

4∑

µ<ν;µ,ν=1

{
1−
1

3
Re U1×1xµν

}

+ c1

4∑

µ�=ν;µ,ν=1

{
1−
1

3
Re U1×2xµν

})
, (3)

with the condition c0 = 1−8c1. For the DBW2 action we
have c1 =−1.4088.
For preparing the sequences of gauge configurations two

different updating algorithms were used: the hybrid Monte
Carlo (HMC) algorithm [26] with multiple time scale inte-
gration and mass preconditioning as described in [27] and
the two-step multi-boson (TSMB) algorithm [28] which
has been tuned for QCD applications following [12, 29].
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2.2 Simulation parameters and a first scaling test

In our numerical simulations we considered two values of
the gauge coupling, namely β = 0.67 and β = 0.74. The
simulations at the lower β-value have been performed on
a 123 ·24 lattice as in [16]. The higher β-value (β = 0.74)
was chosen in such a way that the physical volume of the
163 · 32 lattice remains approximately the same; that is,
a(β = 0.74)� 3

4a(β = 0.67). The value of the lattice spac-
ing was defined by extrapolating the Sommer scale pa-
rameter in lattice units r0/a [30] to zero quark mass and
assuming r0 ≡ 0.5 fm. The simulation parameters and the
amount of statistics are specified in Table 1.
As Table 1 shows, both zero- and non-zero-twisted-

mass points were simulated. The non-zero values of the
twisted mass were also chosen according to the assumed
scale ratio; that is, aµ(β =0.74)= 34 aµ(β =0.67)= 0.0075.
In other words, the bare twisted mass µ is kept (approxi-
mately) constant.
In several points of the parameter space simulation runs

have been performed with both the HMC and the TSMB
updating algorithms. Having run the two algorithms in the
same points allowed one to compare their performance.
It turned out that the optimised HMC algorithm of [27]
is substantially faster than TSMB. For instance, in long
runs at the simulation point (A) (163 ·32 lattice, β = 0.74,
κ = 0.1580, aµ = 0) HMC with multiple time scale inte-
gration and mass preconditioning is almost by a factor of
10 faster. Therefore, in the majority of simulation points
the final data analysis is based on HMC runs. Results from
TSMB updating were only used in the runs of the first part
of Table 1 (those at β = 0.67 and aµ = 0). Even if results
with both updating algorithms were available in several
other points, in the final analysis we never mixed results
from different updating procedures.

Table 2. The results for the scale parameter (r0/a), the pseudoscalar (“pion”) mass
amπ and the vector-meson (“ρ-meson”) mass amρ

run r0/a amπ am� mπ/m� r0mπ (r0mπ)
2

(a) 2.305(36) 0.4468(30) 0.7025(44) 0.6359(51) 1.030(19) 1.061(38)
(b) 2.391(56) 0.4085(55) 0.7007(79) 0.5831(66) 0.977(23) 0.954(44)
(c) 2.351(27) 0.3619(27) 0.629(10) 0.5747(84) 0.850(11) 0.724(19)
(d) 2.652(38) 0.235(12) 0.595(22) 0.396(18) 0.623(30) 0.389(37)

(a′) 2.347(26) 0.4540(24) 0.7026(46) 0.6461(47) 1.065(12) 1.135(25)
(b′) 2.415(24) 0.3981(40) 0.6808(66) 0.5847(61) 0.9618(25) 0.925(18)
(c′) 2.503(29) 0.3449(40) 0.662(11) 0.520(10) 0.863(11) 0.745(18)
(d′) 2.867(29) 0.2793(26) 0.654(45) 0.426(30) 0.801(16) 0.641(26)
(e′) 3.127(31) 0.2937(32) 0.807(64) 0.363(29) 0.918(14) 0.844(25)
(f ′) 3.279(36) 0.3706(50) 0.913(72) 0.403(33) 1.215(23) 1.477(57)
(g′) 3.261(31) 0.4514(84) 1.013(82) 0.444(36) 1.472(30) 2.168(88)

(A) 3.563(33) 0.3038(15) 0.5256(37) 0.5780(41) 1.082(11) 1.172(23)
(B) 3.741(90) 0.2250(29) 0.491(14) 0.457(13) 0.843(22) 0.711(36)

(A′) 3.467(51) 0.3107(24) 0.5354(71) 0.5803(78) 1.077(17) 1.161(36)
(B′) 3.78(10) 0.2429(36) 0.537(21) 0.451(18) 0.920(25) 0.846(46)
(C′) 3.87(10) 0.1954(22) 0.57(14) 0.337(79) 0.756(31) 0.572(48)
(D′) 4.148(65) 0.2620(38) 0.639(73) 0.409(48) 1.086(24) 1.181(52)

Table 1. Run parameters: the gauge coupling (β), the twisted
mass in lattice units (aµ), the hopping parameter (κ) and the
lattice size. The last column shows the number of gauge config-
urations used in the data analysis

run β aµ κ L3×T Nconf

(a) 0.67 0 0.1650 123×24 4514

(b) 0.67 0 0.1655 123×24 2590

(c) 0.67 0 0.1660 123×24 2589

(d) 0.67 0 0.1665 123×24 1721

(a′) 0.67 0.01 0.1650 123×24 600

(b′) 0.67 0.01 0.1655 123×24 620

(c′) 0.67 0.01 0.1660 123×24 509

(d′) 0.67 0.01 0.1665 123×24 570

(e′) 0.67 0.01 0.1670 123×24 584

(f ′) 0.67 0.01 0.1675 123×24 499

(g′) 0.67 0.01 0.1680 123×24 606

(A) 0.74 0 0.1580 163×32 1319

(B) 0.74 0 0.1585 163×32 419

(A′) 0.74 0.0075 0.1580 163×32 430

(B′) 0.74 0.0075 0.1585 163×32 296

(C′) 0.74 0.0075 0.1590 163×32 353

(D′) 0.74 0.0075 0.1595 163×32 352

The results for some basic quantities are collected in Ta-
bles 2 and 3. The pseudoscalar meson (“pion”) mass amπ
is obtained from the correlator of the charged pseudoscalar
density

P±x = χ̄x
τ±

2
γ5χx , (4)



456 F. Farchioni et al.: Numerical simulations with twisted-mass Wilson quarks and DBW2 gauge action

Table 3. The results for the PCAC quark mass (amPCACχ ) and pseudoscalar
(“pion”) decay constant (afχπ)

run amPCACχ r0m
PCAC
χ afχπ r0fχπ

(a) 0.03884(22) 0.0895(14) 0.18567(90) 0.4279(62)
(b) 0.03224(71) 0.0771(18) 0.1798(17) 0.4301(98)
(c) 0.02247(80) 0.0528(20) 0.1553(27) 0.3653(75)
(d) 0.00972(43) 0.0258(11) 0.1369(65) 0.363(18)

(a′) 0.03801(63) 0.0892(16) 0.05774(88) 0.1355(25)
(b′) 0.02791(65) 0.0674(16) 0.0520(11) 0.1257(28)
(c′) 0.01846(99) 0.0462(22) 0.0442(20) 0.1107(44)
(d′) 0.00505(82) 0.0145(22) 0.0174(26) 0.0499(75)
(e′) −0.0109(2) −0.0341(37) −0.0354(37) −0.110(12)
(f ′) −0.0252(18) −0.0829(62) −0.0562(44) −0.184(15)
(g′) −0.0409(17) −0.1336(56) −0.0683(30) −0.2229(98)

(A) 0.02313(23) 0.0824(10) 0.1243(12) 0.4429(58)
(B) 0.01251(43) 0.0469(24) 0.1124(37) 0.420(22)

(A′) 0.02247(33) 0.0779(16) 0.03645(60) 0.1264(28)
(B′) 0.01093(49) 0.0414(21) 0.0266(12) 0.1007(46)
(C′) −0.00120(18) −0.0046(29) −0.0043(18) −0.016(11)
(D′) −0.01635(66) −0.06783(29) −0.0361(16) −0.1500(71)

where τ± ≡ τ1± iτ2. In case of the vector meson (“ρ-
meson”) mass amρ, for generic values of the bare untwisted
and twisted quark mass, the correlators of both vector
(V axµ) and axial-vector (A

a
xµ) bilinears of the χ-fields can be

used:

V axµ ≡ χx
1

2
τaγµχx ,

Aaxµ ≡ χx
1

2
τaγµγ5χx (a= 1, 2) . (5)

The reason is that the physical vector current is, in gen-
eral, a linear combination of V axµ and A

a
xµ (see Sect. 3). In

a given simulation point we determined amρ from the cor-
relator possessing the better signal.
In Table 3 the values of the bare (untwisted) PCAC

quark mass amPCACχ are also given. It is defined by the
PCAC-relation containing the axial-vector current Aaxµ
in (5) and the pseudoscalar density P±x :

amPCACχ ≡

〈
∂∗µA

+
xµ P

−
y

〉

2
〈
P+x P

−
y

〉 . (6)

Here ∂∗µ denotes, as usual, the backward lattice derivative.
Besides amPCACχ , Table 3 also contains the values of

the bare “untwisted” pseudoscalar decay constant afχπ de-
fined by

afχπ ≡ (amπ)
−1
〈
0
∣∣A+x=0,0

∣∣π−
〉
. (7)

The relation of the bare (untwisted) quantities amPCACχ

and afχπ to the corresponding physical quantities will be
discussed in the following section.
The squared ratio of the pion mass to the ρ-meson

mass is plotted in Fig. 1 as a function of (r0mπ)
2, both of

which are expected to be approximately proportional to

the quark mass for small quark masses. (This holds if the
effect of the “chiral logarithms” is negligible in the quark
mass depedence of m2π and if r0 is approximately constant
near zero as a function of the quark mass.) The straight
line in the figure connects the origin and the point with
the physical valuesmπ = 140MeV,mρ= 770MeV and r0 =

Fig. 1. The squared pion to ρ-meson mass ratio (mπ/mρ)
2 ver-

sus (r0mπ)
2. Only simulation points with positive quark mass

are considered. The physical point is shown by an asterisk .
The straight line connecting the origin with it is the continuum
expectation for small quark masses where both quantities are
approximately proportional to the quark mass
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0.5 fm. As the figure shows, in this plot there are observ-
able scale breaking effects between β = 0.67 and β = 0.74,
but the β = 0.74 points are already close to the continuum
expectation. Within the (large) statistical errors there is
no noticeable difference between the points with vanishing
and non-vanishing twisted mass. (According to Table 9 the
twisted-mass values are given by r0µ = 0.02845(68) and
r0µ= 0.0283(15) for β = 0.67 and β = 0.74, respectively.)

3 Twist angle and renormalisation factors

3.1 Twist angle

In this section we discuss the determination of the twist
angle ω. For given (µκ, aµ) this is defined as the rotation
angle relating twisted-mass QCD (TMQCD) to the physi-
cal theory QCD. An important point is that the connection
can be made only after (lattice) renormalisation of the the-
ory. The renormalisation of the local bilinears in the Wil-
son twisted-mass formulation is therefore involved. Some
of the arguments of this section were already discussed in
previous publications of this collaboration [16, 31].
Following [32] we operationally define [16, 31] the twist

angle ω as the chiral rotation angle between the renor-
malised (physical) chiral currents and the corresponding
bilinears of the twisted formulation. We denote with V̂ axµ
and Âaxµ the physical vector and axial-vector currents,
while V axµ and A

a
xµ are the bilinears of the χ-fields defined

in (5). In order to establish the correspondence with the
physical currents, the bilinears of the χ-fields have to be
properly renormalised. This is obtained, as in QCD, by
multiplying them by the respective renormalisation con-
stants ZV and ZA. In a mass independent scheme these are
functions of β alone and coincide with the analogous quan-
tities in Wilson lattice QCD for the same value of β. So the
relation reads

V̂ axµ = ZV V
a
xµ cosω+ εabZAA

b
xµ sinω , (8)

Âaxµ = ZAA
a
xµ cosω+ εabZV V

b
xµ sinω , (9)

where only charged currents are considered (a= 1, 2) and
εab is the antisymmetric unit tensor.
The conserved vector current of the χ-fields

Ṽ axµ ≡
1

4

(
χx+µτa Uxµ(γµ+ r)χx+χxτa U

†
xµ(γµ− r)χx+µ

)

(10)

satisfies by construction the correctWard–Takahashi iden-
tity of the continuum. In this case (8) and (9) apply with
ZV replaced by 1; in particular,

Âaxµ = ZA A
a
xµ cosω+ εabṼ

b
xµ sinω . (11)

In practical applications it is useful to define two fur-
ther angles ωV and ωA:

ωV = arctan(ZAZ
−1
V tanω) ,

ωA = arctan(ZV Z
−1
A tanω) . (12)

In terms of ωV and ωA, (8) and (9) read

V̂ axµ =NV (cosωV V
a
xµ+ εab sinωVA

b
xµ) , (13)

Âaxµ =NA (cosωAA
a
xµ+ εab sinωAV

b
xµ) . (14)

The unknownmultiplicative renormalisations are now con-
tained in an overall factor (X = V,A):

NX =
ZX

cosωX
√
1+tanωV tanωA

. (15)

From the definition (12) it follows that

ω = arctan
(√
tanωV tanωA

)
(16)

ZA

ZV
=
√
tanωV / tanωA . (17)

As already proposed in [16, 31], we determine the twist
angle ω by imposing parity-restoration (up to O(a) preci-
sion) for matrix elements of the physical currents. Due to
the presence of unknown lattice renormalisations, two con-
ditions are required. The most suitable choice in the case of
the vector current is

∑

x

〈
V̂ +x0 P

−
y

〉
= 0 . (18)

Indeed, for asymptotic times, the pion state dominates the
matrix element1 and the condition reads

〈
0
∣∣V̂ +x0
∣∣π−
〉
= 0 . (19)

In case of the axial-vector current we choose the condition2

∑

x,i

〈
Â+xiV̂

−
xi

〉
= 0 (20)

or asymptotically

〈
0
∣∣Â+xi
∣∣ρ−
〉
= 0 . (21)

In terms of (13) and (14), (18) and (20) admit the solution

tanωV =−i

∑
x

〈
V +x0P

−
y

〉
∑
x

〈
A+x0P

−
y

〉 , (22)

tanωA =
−i
∑
x,i

〈
A+xiV

−
yi

〉
+tanωV

∑
x,i

〈
A+xiA

−
yi

〉
∑
x,i

〈
V +xiV

−
yi

〉
+i tanωV

∑
x,i

〈
V +xiA

−
yi

〉 .

(23)

1 At small time separations, due to the O(a) breaking of
parity, intermediate states with “wrong” parity may still play
a role.
2 In [16, 31] the use of the temporal component for the cur-
rents was proposed. This choice is however not optimal: a scalar
state with positive parity dominates in this case the matrix
element in the continuum limit, but at finite lattice spacing
the O(a) breaking of parity introduces contamination by pion
intermediate states which eventually dominate for light quark
masses.
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Equations (16), (17), (22) and (23) allow for the numerical
determination of ω and of the ratio ZA/ZV .
It is obvious that the definition of the twist angle in

the lattice theory is subject to O(a) ambiguities. Differ-
ent choices of the parity-restoration conditions, including
also the form of the lattice currents, result in different def-
initions of the twist angle differing by O(a) terms. The
situation of full twist corresponds to ω = ωV = ωA = π/2.
Numerically it is most convenient to use ωV = π/2 as a cri-
terion. The reason is that a safe determination of the twist
angle is obtained in the asymptotic regime where the light-
est particle dominates as intermediate state. This is the
pseudoscalar state in the case of ωV which, as one would
expect, delivers a better signal than the vector meson in
case of ωA. Therefore we impose [16, 31]

ωV =
π

2
⇐⇒

∑

x

〈
A+x0P

−
y

〉
= 0 (24)

or asymptotically

〈
0|A+x0|π

−
〉
= 0 , (25)

and we denote by µκcr the corresponding value of µκ for the
given µ.
Another possible determination of ωV is obtained by

replacing in (22) the currents with their divergences. For
simplicity, we consider the case of the conserved vector cur-
rent which avoids the introduction of a renormalisation
constant:

cot ω̃V = i

∑
x

〈
∂∗µA

+
xµP

−
y

〉
∑
x

〈
∂∗µṼ

+
xµP

−
y

〉 =
mPCACχ

µ
. (26)

Here in the last step [7, 15] the Ward identity for the con-
served vector current

∂∗µṼ
+
xµ = 2iµP

+
x (27)

and the definition (6) of the “untwisted” PCAC quark

massmPCACχ have been used. If the local vector current de-
fined in (5) is used for the determination of ωV instead of
the conserved one, in (26) the introduction of the renormal-
isation constant ZV is required. In this case one has

cotωV = i

∑
x

〈
∂∗µA

+
xµP

−
y

〉
∑
x

〈
∂∗µV

+
xµP

−
y

〉 = ZV
mPCACχ

µ
, (28)

where ZV is determined as explained in the next subsec-
tion. Using the definition (12) for ωV one arrives at the
following relation involving this time the twist angle ω:

cotω = ZA
mPCACχ

µ
. (29)

Notice that the factor ZV cancels in this relation, which is,
therefore, independent of the choice for the vector current
employed for the determination of the twist angle ω.
One can simply show that the two determinations of ωV

given by (22) and (28) coincide under the assumption that

the ratio of the correlators is independent of the time sepa-
ration; this is in particular true for asymptotic times where
the pion dominates.
To have an effective automatic O(a) improvement,

meaning without large O(a2) effects, the critical line
(µκcr(a, µ), µ) has to be fixed in such a way that the lattice
definition of the untwisted quarkmass (e.g.mPCACχ defined
above) is free, on that line, from mass independent O(a)
errors. For a definition of the critical line where this condi-
tion is not necessarily satisfied, one has to make sure that
µ > aΛ2.
The issue of the choice of the critical untwisted mass

has been raised by the work of Aoki and Bär [33] and
by the numerical results obtained in [34]. This problem
has been further analysed in several aspects [15, 35, 36].
In [15, 33, 36] the theoretical framework is twisted-mass
chiral perturbation theory (tmChPT) [25] where the cutoff
effects are included in the chiral lagrangian along the lines
of [2, 46]. The works [15, 33] agree on the fact that choos-
ing the critical mass by imposingmPCACχ = 0 (or ωV = π/2)
allows one to have automatic O(a) improvement down to
quark masses that fulfill µ� a2Λ3. In [35] a Symanzik ex-
pansion was performed (in an approach different from that
of [15, 33], cf. [15] for a discussion) confirming the results
of [15, 33]. For a discussion of these issues in numerical
studies within the quenched approximation see [22–24]
and the review [11].

3.2 Determination of ZV

We adopt here the procedure well known in QCD which
relies on the non-renormalisation property of the con-
served current Ṽxµ [38]. A possible determination of ZV in
TMQCD is given by

Z
(1)
V =

〈
0|Ṽ +x=0,0|π

−
〉

〈
0|V +x=0,0|π

−
〉 . (30)

Note that in TMQCD the time component of the vector
current couples the vacuum to the pseudoscalar particle:
in the most interesting region near full twist this coupling
is maximal. (Note that at aµ= 0 the analogous procedure
has to rely on the noisier matrix element with the vector
particle or on three point functions.) Alternatively ZV can
be determined without direct use of the conserved current
by exploiting the (exact) Ward identity for the vector cur-
rent. This implies [39]

〈
0|Ṽ +x=0,0|π

−
〉
=
−2iµ

mπ

〈
0|P+x=0|π

−
〉
. (31)

Inserting the above relation in (30) a second determination
of ZV is obtained:

Z
(2)
V =

−2iµ
〈
0|P+x=0|π

−
〉

mπ
〈
0|V +x=0,0|π

−
〉 . (32)

Z
(1)
V and Z

(2)
V (differing by O(a) terms) are mass de-

pendent renormalisations. We obtain a mass independent
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determination of ZV by extrapolating Z
(i)
V to full twist

(mPCACχ = 0). In this situation the theory isO(a) improved

and the Z
(i)
V deliver an estimate of ZV with O(a

2) error
(also including O((µa)2) terms).

3.3 Physical quantities

The knowledge of the twist angle ω allows for the deriva-
tion of physical quantities of interest in QCD for a generic
choice of (µκ, aµ). Let us consider the case of the quark
mass and the pion decay constant. It is convenient [22,
39, 40] here to use the conserved vector current since it
possesses already the right continuum normalisation. The
physical PCAC quark mass mPCACq can be obtained from
the Ward identity for the physical axial-vector current:

〈
∂∗µÂ

+
xµP

−
y

〉
= 2amPCACq

〈
P+x P

−
y

〉
. (33)

We use (8) in order to eliminate Aaxµ in (11) for ω 
= 0

Âaxµ =−εabV̂
b
xµ cotω+ εabṼ

b
xµ(sinω)

−1 (34)

and insert the result in theWard identity (33) using isospin
invariance for V̂ axµ. As a result we obtain

amPCACq =
−i

2 sinω

〈
∂∗µṼ

+
xµP

−
y

〉
〈
P+x P

−
y

〉 = µ

sinω
, (35)

where in the last step we used once again the Ward iden-
tity (27). Inserting (29) into the last expression in the
above equation, we arrive at the following relation for the
untwisted quark mass:

mPCACχ =mPCACq Z−1A cosω . (36)

In the remainder we shall also make use of a definition of
the untwisted quark mass which already incorporates the
renormalisation factor of the axial current:

m̄PCACχ =mPCACq cosω = ZAm
PCAC
χ . (37)

Analogously, for the physical pion decay constant fπ we
use

afπ = (amπ)
−1
〈
0|Â+x=0,0|π

−
〉

=−i(amπ sinω)
−1
〈
0|Ṽ +x=0,0|π

−
〉
. (38)

Also here the matrix element on the right hand side can be
replaced by the matrix element of the pseudoscalar density
as in (31) giving

afπ =
−2aµ

(amπ)2 sinω

〈
0|P+x=0|π

−
〉
. (39)

Let us note that here the normalisation of fπ corresponds
to a phenomenological value ≈ 130MeV. If the local vector
current is used in (38) instead of the conserved one, a factor
ZV is missing:

afvπ =−i(amπ sinω)
−1
〈
0|V +x=0,0|π

−
〉
,

fvπ = Z
−1
V fπ . (40)

3.4 Results

In Fig. 2 the local determination of ωV and ωA is shown
as a function of the time separation for a specific simula-
tion point at positive untwisted quark mass. The numer-
ical values of the twist angles ωV , ωA and ω are reported
in Table 4. Notice that the simulation point at β = 0.74 and
κ= 0.159 is almost at full twist.
Figures 3 and 4 show the determinations of µκcr by ex-

trapolatingmPCACχ and cotωV to zero. The theoretical de-
pendence of the twist angle upon the untwisted bare quark
mass µκ can be obtained [16] by starting from [37]

cotω =
mχR

µR
+O(a) , (41)

Fig. 2. Determination of tanωV and tanωA as in (22) and (23)
for the point (a′). The lines represent the fitted values

Table 4. The twist angles ω, ωV and ωA, as defined in (8), (9)
and (12), determined by (22), (23) and (16)

β aµ κ ωV /π ωA/π ω/π

0.67 1.0 ·10−2 0.1650 0.1352(13) 0.0564(17) 0.0883(13)

0.67 1.0 ·10−2 0.1655 0.1772(29) 0.0771(27) 0.1190(25)

0.67 1.0 ·10−2 0.1660 0.2412(62) 0.1069(41) 0.1661(54)

0.67 1.0 ·10−2 0.1665 0.411(12) 0.229(17) 0.334(17)

0.67 1.0 ·10−2 0.1670 0.678(12) 0.622(16) 0.647(11)

0.67 1.0 ·10−2 0.1675 0.8053(86) 0.826(13) 0.8137(80)

0.67 1.0 ·10−2 0.1680 0.8709(43) 0.843(23) 0.857(11)

0.74 7.5 ·10−3 0.1580 0.1542(26) 0.0722(38) 0.1076(31)

0.74 7.5 ·10−3 0.1585 0.2613(66) 0.1393(96) 0.1963(77)

0.74 7.5 ·10−3 0.1590 0.532(12) 0.582(37) 0.5544(92)

0.74 7.5 ·10−3 0.1597 0.7966(49) 0.790(15) 0.794(12)
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Fig. 3. Determination of µκcr at β = 0.67, aµ= 0.01 by parity-
restoration and by extrapolating the untwisted PCAC quark
mass mPCACχ to zero

where µR and mχR are the renormalised twisted and un-
twisted quark masses in the continuum limit

µR = Z
−1
P µ , (42)

mχR = a
−1Z−1S (µκ−µκcr) . (43)

Observe that the relation (41) holds up to O(a) terms be-
cause the right hand side of the relation corresponds to
a different definition of the twist angle compared to the one
given in Sect. 3.1. The two definitions only coincide in the
continuum limit. By using the first of equations (12) one
obtains for ωV [16]

cotωV = (ZoV µ)
−1(µκ−µκcr)+O(a) (44)

ZoV = ZSZAZ
−1
P Z

−1
V . (45)

Note that the angular coefficient of the linear fit gives the
finite combination of renormalisation factors ZoV . Using as
an input the determination of ZA/ZV in (17) one can ob-
tain from this the combination ZP /ZS .

Table 5. Determination of µκcr by requiring ω = π/2, µκcr(ωV ), or m
PCAC
χ =

0, µκcr(m
PCAC
χ ). The plus and minus signs indicate extrapolations from posi-

tive or negative untwisted quark masses mPCACχ , avg denotes the average

β aµ sign µκcr(ωV ) µκcr(m
PCAC
χ ) ZoV

0.67 1.0 ·10−2 + 2.99800(9) 2.99839(12) 1.438(33)

0.67 1.0 ·10−2 − 3.00059(13) 3.00043(17) 1.065(61)

0.67 1.0 ·10−2 avg 2.99930(11) 2.99941(15) 1.251(47)

0.74 7.5 ·10−3 + 3.145528(52) 3.145645(22) 1.328(36)

0.74 7.5 ·10−3 − 3.145441(52) 3.145435(21) 1.055(49)

0.74 7.5 ·10−3 avg 3.145484(52) 3.145540(22) 1.191(42)

Fig. 4. Determination of µκcr at β = 0.74, aµ = 0.0075 by
parity-restoration and by extrapolating the untwisted PCAC
quark mass mPCACχ to zero

We use (44) for a linear fit to µκcr and ZoV ; see Table 5
for the results. As expected from the discussion in Sect. 3.1,
the condition mPCACχ = 0 gives results very close to those
from the parity-restoration condition cotωV = 0. We con-
clude that the two methods are essentially equivalent also
from the numerical point of view. A discrepancy is ob-
served between the extrapolation from positive and nega-
tive quark masses for the simulation point β = 0.67: we in-
terpret this as a residual effect of the first order phase tran-
sition at the given value of the lattice spacing. (Whether
first order phase transition or “cross-over” can only be
decided in a study of the infinite volume limit.) Observe
also that the ZoV comes out different for the two differ-
ent signs of the quark mass: this is due to the break-
ing of symmetry under reflection of the untwisted quark
mass induced by O(a) terms [36]. The numerical discrep-
ancy shows that these O(a) corrections are relevant. An
O(a)-improved estimate of ZoV is simply obtained by av-
eraging the determinations for negative and positive quark
masses, corresponding to a Wilson average for the quan-
tity under study. An analogous observation can be done for
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Table 6. Renormalisation constants of the vector and axial-vector currents. The ratio
ZA/ZV is determined from the analysis of the twist angles, cf. (16); two different deter-

minations of the vector current ZV are reported: Z
(1)
V from (30) and Z

(2)
V from (32);

the renormalisation constant of the axial-vector current is derived by combining the

results for ZA/ZV and Z
(1)
V

β aµ κ ZA/ZV Z
(1)
V Z

(2)
V ZA

0.67 1.0 ·10−2 0.1650 1.589(26) 0.5910(13) 0.5810(16) 0.939(15)

0.67 1.0 ·10−2 0.1655 1.587(28) 0.5813(11) 0.5761(25) 0.923(16)

0.67 1.0 ·10−2 0.1660 1.649(28) 0.5766(12) 0.5708(38) 0.951(16)

0.67 1.0 ·10−2 0.1665 1.979(68) 0.5689(10) 0.5657(39) 1.126(39)

0.67 1.0 ·10−2 0.1670 0.815(58) 0.5705(14) 0.5666(46) 0.465(33)

0.67 1.0 ·10−2 0.1675 1.087(47) 0.5716(32) 0.5688(38) 0.623(27)

0.67 1.0 ·10−2 0.1680 0.894(78) 0.5851(33) 0.5754(43) 0.518(46)

0.74 7.5 ·10−3 0.1580 1.508(35) 0.6379(12) 0.6315(32) 0.963(22)

0.74 7.5 ·10−3 0.1585 1.515(59) 0.6294(11) 0.6294(38) 0.953(37)

0.74 7.5 ·10−3 0.1590 1.65(45) 0.62595(95) 0.6241(38) 1.04(28)

0.74 7.5 ·10−3 0.1597 0.972(73) 0.6291(25) 0.6242(40) 0.612(46)

other combinations of renormalisation constants (see the
following).
Table 6 reports the determination of the renormalisa-

tion constants of the vector and axial-vector currents ZV
and ZA. The ratio ZA/ZV comes from the analysis of the
the twist angles, (17). Using the direct estimate of ZV
by (30) we can also determine ZA. Observe that the full
twist extrapolations of ZA/ZV from the two quark mass
signs present large discrepancies, which in this case can-
not be attributed to O(a) effects (these should disappear
at full twist). A possible explanation of the discrepancy
could reside in the relatively bad quality of the data in the
negative mass region. The discrepancies in ZA and ZP /ZS

Fig. 5. Full twist extrapolation of Z
(1)
V at β = 0.67, aµ= 0.01

are a consequence of that for ZA/ZV . In the light of these
considerations we rely on the determinations for positive
quark masses.
The full twist extrapolations of ZV are shown in Figs. 5

and 6: the values from the two signs of the quark mass are
rather close, compatible with each other within statistical
uncertainty. For the case β = 0.74 the extrapolation is very
short, see Table 7 for the numerical values with compari-
son with one-loop perturbative estimates [41]. Table 7 also
includes the determinations of the ratio ZP /ZS from ZoV
(see (44) and (45)). This quantity is of particular interest
for simulations [42] of the theory with an additional mass-
split doublet describing the strange and charm quarks [43].

Fig. 6. Full twist extrapolation ofZ
(1)
V at β = 0.74, aµ= 0.0075
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Table 7. Full twist extrapolations for ZV , ZA and the ratio ZA/ZV (see text for
explanation) with comparison with one-loop perturbative estimates (PT) and tadpole-
improved perturbative estimates (TI) [41]. The ratio ZP /ZS is also reported, deter-
mined from ZoV (see (44) and (45))

β aµ Sign Op. Z Z(PT) Z(TI)

0.67 1.0 ·10−2 + V 0.5650(11) 0.6089 0.6531

0.67 1.0 ·10−2 – V 0.5673(19) 0.6089 0.6531

0.74 7.5 ·10−3 + V 0.6217(23) 0.6459 0.6892

0.74 7.5 ·10−3 – V 0.6257(10) 0.6459 0.6892

0.67 1.0 ·10−2 + A 0.952(30) 0.7219 0.7176

0.67 1.0 ·10−2 – A 0.49(4) 0.7219 0.7176

0.74 7.5 ·10−3 + A 0.944(74) 0.7482 0.7735

0.74 7.5 ·10−3 – A 0.612(46) 0.7482 0.7735

0.67 1.0 ·10−2 + A/V 1.683(52) 1.1130 0.9696

0.67 1.0 ·10−2 – A/V 0.867(70) 1.1130 0.9696

0.74 7.5 ·10−3 + A/V 1.52(12) 1.1023 0.9747

0.74 7.5 ·10−3 – A/V 0.972(73) 1.1023 0.9747

0.67 1.0 ·10−2 + P/S 1.17(6) 0.8157 0.9407

0.67 1.0 ·10−2 – P/S 0.81(11) 0.8157 0.9407

0.74 7.5 ·10−3 + P/S 1.14(12) 0.8302 0.9444

0.74 7.5 ·10−3 – P/S 0.92(10) 0.8302 0.9444

Defining rcs as the mass ratiomc/ms, the positivity of the
fermionic measure in the strange–charm sector imposes

ZP

ZS
>
rcs−1

rcs+1
. (46)

The most stringent condition considering the experimental
bounds [44] forms andmc is

ZP

ZS
> 0.89 . (47)

Our results and the tadpole improved perturbative deter-
minations for ZP /ZS (for Nf = 2) seem to indicate that
already at our values of β this condition is satisfied.

Table 8. Physical PCAC quark mass amPCACq and pion decay constant afπ ob-

tained from (35) and (38), respectively. The last two columns show am̄PCACχ ≡

cos(ω)amPCACq and the unrenormalised pion decay constant calculated with the local
current afvπ, respectively

β aµ κ amPCACq afπ am̄PCACχ afvπ

0.67 1.0 ·10−2 0.1650 0.03652(53) 0.1672(25) 0.03511(54) 0.2936(63)

0.67 1.0 ·10−2 0.1655 0.02739(55) 0.1541(25) 0.02549(59) 0.2750(73)

0.67 1.0 ·10−2 0.1660 0.02006(59) 0.1447(23) 0.01739(69) 0.2549(84)

0.67 1.0 ·10−2 0.1665 0.01154(11) 0.1192(18) 0.00575(71) 0.2113(62)

0.67 1.0 ·10−2 0.1670 0.01117(38) 0.1085(37) −0.00497(43) 0.1932(80)
0.67 1.0 ·10−2 0.1675 0.01810(69) 0.1203(44) −0.01508(82) 0.219(13)
0.67 1.0 ·10−2 0.1680 0.0230(17) 0.1146(95) −0.0207(18) 0.202(14)

0.74 7.5 ·10−3 0.1580 0.02262(45) 0.1170(25) 0.02133(66) 0.1833(57)

0.74 7.5 ·10−3 0.1585 0.01297(44) 0.0999(26) 0.01057(54) 0.1625(83)

0.74 7.5 ·10−3 0.1590 0.007611(38) 0.0874(15) −0.00129(22) 0.1400(56)
0.74 7.5 ·10−3 0.1595 0.01245(61) 0.0867(39) −0.00992(78) 0.137(10)

The results for the physical PCAC quark mass and pion
decay constant fπ obtained from (35) and (38) are listed
in Table 8. In Figs. 7 and 8 the pion decay constant is plot-
ted as a function of the quark mass. The simulation points
for negative quark masses are not taken into account in
the present discussion. The figures also include the deter-
mination of fπ by the axial-vector current A

a
xµ: a formula

similar to (38) applies in this case where, however, the fac-
tor 1/ sinω is replaced by 1/ cosω. In the interesting region
near full twist this introduces large fluctuations in the esti-
mate of fπ, as one can see from the figures. Moreover in the
case of the axial-vector current, the decay constant has not
yet the right normalisation of the continuum: a ZA-factor
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Fig. 7. The pion decay constant afπ as a function of the PCAC
quark mass amPCACq at β = 0.67, aµ= 0.01

is still missing. On the contrary, in the case of the con-
served vector current fπ has automatically the physical
normalisation [22, 39, 40]. If we exclude the lightest point
at β = 0.67, which is likely to be under the influence of
residual metastabilities, fπ seems to be characterised by
a linear dependence upon the quark mass. On the basis
of this observation we try a simple linear extrapolation to
the chiral limit mPCACq = 0; see Table 9 for the numerical
results. Of course, deviations from this linear behaviour
could be present for lighter quark masses where chiral log-
arithms play a role.
In order to check the scaling between the two β-values

we need to fix the lattice spacing. This can be accomplished
by extrapolating the value of r0 tom

PCAC
q = 0. Also in this

case we obtain two different values for the two different
signs of the untwisted quark mass, again due to O(a) ef-
fects. As for ZoV we take the average of the two values,
which delivers an O(a)-improved estimate of r0 in the chi-
ral limit. The results are reported in Table 9. We obtain
for the lattice spacing (assuming r0 = 0.5 fm): a(0.67) =
0.1757(41) fm, a(0.74) = 0.1326(70) fm. Denoting the zero
quark mass limit of the pion decay constant by

Table 9. Chiral extrapolation (mPCACq = 0) of the Sommer scale parameter r0 and
pion decay constant fπ. (This latter is denoted by f0 ≡ limmPCACq =0 fπ.) The scale in-

dependent combination f0r0 is also reported. Only data with positive twisted quark
masses have been used for the extrapolations, with the exception of the point at
aµ= 0.0075 and κ= 0.1590 which is almost at full twist

β aµ r0/a a [fm] a f0 f0 r0

0.67 1.0 ·10−2 2.845(66) 0.1757(41) 0.1171(59) 0.333(10)

0.74 7.5 ·10−3 3.77(20) 0.1326(70) 0.0726(25) 0.274(20)

Fig. 8. The pion decay constant afπ as a function of the PCAC
quark mass amPCACq at β = 0.74, aµ= 0.0075

f0 ≡ lim
mPCACq =0

fπ , (48)

we obtain f0r0(0.67) = 0.333(10), f0r0(0.74) = 0.274(20).
These values are not far from the phenomenological value
(f0r0)phen = 0.308. (The errors here are only statisti-
cal. Systematic errors of the chiral extrapolation are not
included.)

4 Fits to chiral perturbation theory

Chiral perturbation theory (ChPT) is an expansion around
the limit of massless quarks in QCD [1]. It describes the
dependency of physical quantities on the quark masses
in terms of expansions in powers of quark masses, modi-
fied by logarithms. In nature, however, quark masses have
fixed values. The question of how observables depend on
them functionally is experimentally unaccessible. Lattice
gauge theory, on the other hand, offers the possibility to
vary quark masses. Therefore it represents the ideal field
of application of chiral perturbation theory. On the one
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hand, chiral perturbation theory allows one to extrapo-
late results from numerical simulations of QCD into the
region of small physical values for the up- and down-
quark masses. On the other hand, lattice QCD can provide
values for the low-energy constants of chiral perturbation
theory.
In chiral perturbation theory the effects of the non-zero

lattice spacing a can be taken into account in form of an
expansion in powers of a [2, 45–48]. For the case of the Wil-
son twisted-mass formulation of lattice QCD this has been
worked out in next-to-leading order in [6, 15, 25, 49].
The major purpose of the present paragraph is to pro-

vide a set of formulas derived from lattice chiral perturba-
tion theory that can be used to analyse physical quantities
such as the pion mass, decay constants and amplitudes.
The novelty here is that these quantities have to be de-
scribed across or nearby a phase transition.
The ChPT formulas are expected to be applicable at

sufficiently small values of the lattice spacing and quark
mass. It is thus far from obvious whether the data ob-
tained with the DBW2 action in this work can be described
by them, hence it is interesting to confront the simulation
data at our quark masses and lattice spacings with these
formulas. Let us emphasise that we consider this investiga-
tion mainly as a methodological study that does not aim to
extract physical values of the low-energy constants in the
first place.
Properly determined parameters of the ChPT formu-

las in the continuum limit are independent of the lattice
action. The parameters describing the dependence on the
lattice spacing do, however, depend on it. Therefore, in
an appendix we also present ChPT fits of some simulation
data obtained previously with the Wilson plaquette gauge
action [14].
The quark masses in chiral perturbation theory always

appear multiplied by 2B0, where B0 is a low-energy con-
stant. A connection to lattice regularisation can be estab-
lished by considering the renormalised quark masses de-
fined in (42), (43) and

mPCACχR =
ZA

ZP
mPCACχ . (49)

A common renormalisation factor 1/ZP in m
PCAC
χR and µR

can be absorbed into B0. However, since the multiplicative
renormalisation ofmPCACχ and µ differs by a factor ZA, this
has to be taken into account when fitting lattice data (see
below).
The lattice spacing enters chiral perturbation theory in

the combination

ρ= 2W0a , (50)

whereW0 is another low-energy constant.
For the low-energy constants of lattice QCD in next-to-

leading order [46, 48] with two quark flavours we use the
notation

L54 = 2L4+L5, L86 = 2L6+L8 ,

W54 = 2W4+W5, W86 = 2W6+W8 , (51)

W =
1

2
(W86−2L86), W

′ =
1

2
(W ′86−W86+L86) ,

W̃ =
1

2
(W54−L54) . (52)

Experience in untwisted lattice QCD shows [50] that
lattice artefacts are considerably reduced when observ-
ables are considered as functions of the PCAC quark mass
instead of the renormalised lattice quark mass. (A possible
reason is that the PCAC quark mass reabsorbs leading
O(a) effects.) Therefore, in our case, instead of using mχR
as a variable, we re-expand the physical quantities in terms
of the PCAC quark mass in the twisted basis mPCACχR . In-
cluding the relevant prefactor we define

χ′PCAC = 2B0m
PCAC
χR . (53)

For the purpose of fitting data at constantµ it is convenient
to define the combination

χ̄= 2B0

√(
mPCACχR

)2
+µ2R . (54)

(The attentive reader is certainly realising that we use the
symbols χ for different quantities. Nevertheless, both the
notation for the fermion field of twisted-mass fermions and
the mass parameters in ChPT are standard in the litera-
ture and we do not want to change either of them in this
paper.) Then, for the charged pionmasses, chiral perturba-
tion theory at next-to-leading order including lattice terms
of order a gives

m2π± = χ̄+
1

32π2F 20
χ̄2 ln

χ̄

Λ2

+
8

F 20

{
(−L54+2L86)χ̄

2+2(W − W̃ )ρχ′PCAC

}
.

(55)

Similarly for the pion decay constant and the one-pion ma-
trix element of the pseudoscalar density:

Fπ

F0
= 1−

1

16π2F 20
χ̄ ln

χ̄

Λ2
+
4

F 20

{
L54χ̄+2W̃ρ

χ′PCAC
χ̄

}
,

(56)

Gπ

F0B0
= 1−

1

32π2F 20
χ̄ ln

χ̄

Λ2

+
4

F 20

{
(−L54+4L86)χ̄+(4W −2W̃)ρ

χ′PCAC
χ̄

}
.

(57)

In the ChPT formulas the pion decay constant at zero
quark mass (F0) appears. In the conventional normalisa-
tion its phenomenological value is F0 ≈ 86MeV. This is re-
lated to f0 ≈ 122MeV used in the previous section by F0 ≡
f0/
√
2. Similarly, Fπ and Gπ denote the pion decay con-

stant and the one-pion matrix element of the pseudoscalar
density, respectively, in this normalisation convention.
The renormalisation scale Λ appearing in the one-loop

contributions is taken to be Λ= 4πF0 as usual. Taking into
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account the renormalisation factors, when using these ex-
pressions for fitting the lattice data, one writes

χ̄= 2B
√
(mPCACχ )2+Z−2A µ

2 , (58)

where B =B0ZA/ZP .

4.1 Fit procedure

For fitting the data as a function of mPCACχ (55)–(57) are
going to be used. The data for mπ, Fπ and Gπ, as well as
that for mPCACχ are afflicted with numerical errors. There-
fore, a fit procedure has to be used which takes into account
errors in both coordinates. The method with effective vari-
ances [51] treats the coordinates on unequal footings but
is numerically not so convenient. We have decided to use
the more appropriate method of generalised least-squares
fits [52].
Consider a data set containing N “measured” values

for each of the D variables. They are collected in the vec-
tor y= (y1, . . . ,yN), where each element yi is itself a col-
umn vector withD elements yi = {yi,j} , j = 1, . . . , D. The
true values for each data point, which have to be esti-
mated together with the parameters, will be collected in
the same way in a vector x = (x1, . . . ,xN) with entries
xi = {xi,j} , j = 1, . . . , D. Now the set of measured data
points {yi,j} represents a single realisation of an experi-
ment which occurs with a probability given by a joint dis-
tribution called “likelihood”. The likelihood is specified
by a multivariate normal distribution L with mean values
given by the exact values x and a ND×ND covariance
matrix σ =

{
σ(i,j),(k,l)

}
, i, k = 1, . . . , N ; j, l = 1, . . . , D:

L=
1

(2π)
ND
2

1
√
detσ

exp

[
−
1

2
(x−y)σ−1 (x−y)T

]
.

(59)

The process of data analysis amounts to the con-
strained maximisation of this likelihood through the es-
timation of the values of x based on the knowledge of y,
where the constraints enter through the fit-functions. In-
stead of maximising L it is more convenient to minimise its
negative logarithm. The only non-constant term is given by

L′ =
1

2
(x−y)σ−1 (x−y)T . (60)

The fit-functions are given by a number F of model-
functions Gi, which can be incorporated as, generally non-
linear, constraints on the relationship between the exact
values collected in x. These functions also depend on a set
of P parameters α = (α1, . . . , αP ), whose values are to be
determined. They can be written in the compact form
G (x, α) = 0 with the F -dimensional column vector G =
(G1, . . . , GF ).
Maximisation of the likelihood L under the constraints

G (x, α) = 0 is now equivalent to the unconstrained min-
imisation of L given by

L=
1

2
(x−y)σ−1 (x−y)T+λG , (61)

where λ is the F -dimensional row-vector of Lagrange mul-
tipliers. We implemented the minimisation of L using the
Maple algorithm NLPSolve, which is based on routines
provided by the numerical algorithms group (NAG).
In the present case the N different points of measure-

ment correspond to different values of the hopping param-
eter κ, which are completely independent of each other.
Therefore we can assume the covariance matrix to be diag-
onal, σ(i,j),(i,j) = (∆yi,j)

2, where ∆yi,j denotes the statis-
tical error of yi,j .
The errors of the model parameters αi are calculated

using a Monte Carlo approach. In K steps of an artifi-
cial Monte Carlo procedure a new set of normally dis-
tributed values

{
ymci,j
}
k
, k = 1, . . . ,K, is generated using

the values of {yi,j} as means and σi,j as the variances.
Now for every k an independent estimate for the param-
eters is calculated yielding αkmc;i in each step. Finally the
errors∆αi are given by the standard deviation of the set of{
αkmc,i

}
, k = 1, . . . ,K.

4.2 Results

At β = 0.67 and at β = 0.74 results for mπ, Fπ , Gπ and
mPCACχ are available both for non-vanishing and for van-
ishing twist mass µ. At µ= 0 only part of the data, namely
form0−mcr > 0, is reliable and is being used.
By using the results in Table 9 for the values of r0/a ex-

trapolated to the chiral limit, we express all quantities in
units of MeV. For the value of the Sommer scale we assume
r0 ≡ 0.5 fm = (394.6MeV)−1. This allows us to compare
and to combine the results from the different values of β.
It is important to observe that the lattice spacing a(β)

is obtained from extrapolation of r0/a to the chiral limit.
In presence of both positive and negative masses we take
the average. This is a strong constraint on the fits, since
the data have to reproduce the scaling behaviour dictated
by r0. If the purpose is the determination of the low-energy
constants, matching ratios like mπ/Fπ with ChPT would
be preferable. However, in this exploratory study, we find it
interesting to check that the scaling behaviour of different
quantities is indeed consistent.
We made combined fits of the three quantities as func-

tions ofmPCACχ for both values of β, including lattice terms
of order a. For the pion masses the expressions for the
O(a2) lattice terms are known, but they cannot be fitted
meaningfully. The value of ZA, entering the fit-functions,
has been taken as input from the Monte Carlo data. As it
varies with β, we denote the corresponding values ZA(β).
The fits include data both for non-zero- and zero-twisted
mass µ.
The low-energy constants resulting from the fits are

shown in Table 10. In the first case data points with both
positive and negative values of mPCACχ are fitted, whereas
in the second case only those withmPCACχ > 0. (This latter
choice corresponds to the procedure in Sect. 3 where also
only points with mPCACχ > 0 have been taken into account
in the chiral extrapolation of fπ.) We also made single fits
for the three quantities, which are not displayed here. As
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Table 10. Results of the ChPT fits with DBW2 gauge action. Upper part: fit with both positive and nega-

tive values of amPCACχ . Lower part: fit with only positive values of amPCACχ

Input ZA Fitted ZA
β = 0.67 β = 0.74 both β β = 0.67 β = 0.74 both β

ZA(0.67) 0.952(30) − 0.952(30) 0.8658(90) − 0.852(14)
ZA(0.74) − 0.944(74) 0.944(74) − 0.868(18) 0.909(31)
F0 [MeV] 80.7(3.6) 68.6(5.2) 73.7(4.8) 78.9(3.2) 66.0(4.4) 72.0(3.0)
B(0.67) [GeV] 3.20(13) − 3.20(12) 3.09(10) − 3.063(94)
B(0.74) [GeV] − 3.31(30) 3.16(38) − 3.12(19) 3.18(15)

L54 ·10
3 0.98(26) 0.96(26) 1.17(28) 0.50(15) 0.80(23) 0.74(12)

L86 ·10
3 0.78(13) 0.81(11) 0.94(14) 0.554(84) 0.76(10) 0.709(61)

W0 ·W ·10
−3 [MeV3] 50(15) −21(16) 18(17) 35(12) −30(14) 6.6(8.0)

W0 ·W̃ ·10
−3 [MeV3] 89(19) 21(38) 64(29) 62(14) −9(22) 35(12)

Λ3/F0 6.1(2.8) 5.5(2.3) 5.1(2.5) 5.9(1.7) 5.0(2.0) 5.3(1.1)
Λ4/F0 17.1(1.4) 17.0(1.4) 18.2(1.6) 14.74(69) 16.2(1.1) 16.86(59)
Lmin/d.o.f. 12.8(3.5) 12.3(4.9) 13.1(7.2) 9.2(1.6) 11.6(2.4) 9.4(1.6)

ZA(0.67) 0.952(30) − 0.952(30) 0.888(10) − 0.896(11)
ZA(0.74) − 0.944(74) 0.944(74) − 0.910(18) 0.880(23)
F0 [MeV] 80.3(3.4) 91.2(5.4) 83.9(4.4) 79.3(3.4) 89.9(4.2) 82.2(2.6)
B(0.67) [GeV] 2.92(11) − 2.95(11) 2.85(10) − 2.864(84)
B(0.74) [GeV] − 3.46(22) 3.52(38) − 3.39(15) 3.39(11)

L54 ·10
3 1.39(33) 1.04(53) 1.32(28) 0.86(17) 0.82(23) 0.80(13)

L86 ·10
3 0.92(16) 0.71(20) 0.81(15) 0.70(11) 0.64(13) 0.649(77)

Λ3/F0 7.1(4.1) 7.7(6.4) 7.7(4.0) 6.4(2.2) 6.9(3.0) 6.7(1.7)
Λ4/F0 19.5(2.0) 17.4(2.9) 18.6(1.6) 16.47(88) 16.3(1.2) 16.19(69)
Lmin/d.o.f. 10.1(4.9) 2.7(6.5) 5.8(7.9) 7.0(2.0) 2.6(2.4) 4.5(1.6)

they are each based on less data, their results are less valu-
able, but consistent with the combined fits.
In addition to the single-β fits we also made a global fit

including the data from both values of β. The results are
also contained in Table 10. The fits at the two single values
of β and the global fit are roughly consistent with each
other. The differences in the numbers for the low-energy
constants give an indication of the size of the uncertainties.
Instead of using ZA as input from the numerical cal-

culations, it can alternatively be left as an additional fit
parameter. The corresponding fit results are shown in the
right hand side of the table. The fittedZA is in rough agree-
ment with its Monte Carlo estimate. Also, the low-energy
coefficients are consistent with the ones from the other fits.
In addition to the combinations of Gasser–Leutwyler

coefficients Lk, the table includes the values of the invari-
ant scale parameters [53]

Λ3 = 4πF0 exp(128π
2(L54−2L86)) ,

Λ4 = 4πF0 exp(32π
2L54) . (62)

The results for Λ3, Λ4 are close to phenomenological es-
timates (see the discussion). TheW -parameters have large
errors but their magnitude is reasonable, asW0 is expected
to be of order Λ3QCD and the otherW ’s of the same order as
the L’s.
The fit curves for mπ, Fπ and Gπ together with data

points at β = 0.67 and β = 0.74 are shown in Figs. 9, 10,
11 and 12. In order to display the size of the leading-order

Fig. 9. The charged pion masses squared as a function of

amPCACχ at aµ = 0.01. The points represent the data at β =
0.67. The solid line displays the global fit with ZA as input. The
dashed and dotted lines show the fit with part of the L and W
coefficients set to zero, in order to indicate the size of the NLO
corrections
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Fig. 10. The charged pion masses squared as a function of
amPCACχ at aµ = 0.0075. The points represent the data at
β = 0.74. The solid line displays the global fit with ZA as in-
put. The dashed and dotted lines show the fit with part of the
L andW coefficients set to zero, in order to indicate the size of
the NLO corrections

Fig. 11. The pion decay constant aFπ as a function of
amPCACχ at β = 0.67, aµ = 0.01. The solid line displays the
global fit with ZA as input. The dashed and dotted lines show
the fit with part of the L andW coefficients set to zero, in order
to indicate the size of the NLO corrections

contribution and the corrections, the figures contain ad-
ditional curves representing the fit-functions with some of
the low-energy constants being put to zero.

Fig. 12. The pseudoscalar matrix element a2Gπ as a function
of amPCACχ at β = 0.67, aµ= 0.01. The solid line displays the
global fit with ZA as input. The dashed and dotted lines show
the fit with part of the L andW coefficients set to zero, in order
to indicate the size of the NLO corrections

We have also investigated mPCACχ as a function of m0.
It can be fitted with the corresponding formula from chiral
perturbation theory, which involvesW , W ′ and W̃ but no
L-coefficients, but the resulting coefficients are unreliable
owing to large errors.
In this section we stick to the definition of the untwisted

bare PCAC quark mass amPCACχ in (6). As it is shown in
the Appendix, the agreement with the ChPT formulas can
be improved by taking am̄PCACχ of (37) as the quark mass
variable, instead. In addition, ChPT fits to some previously
obtained simulation data by the Wilson plaquette gauge
action are also presented there.

5 Discussion

We compared in this paper the numerical simulation re-
sults with two flavours of twisted-mass Wilson quarks and
DBW2 gauge action at two values of the lattice spacing
corresponding to β = 0.67 and β = 0.74. The lattices were
123 ·24 and 163 ·32, respectively. The lattice spacing was
defined by the value of the Sommer scale parameter r0 ex-
trapolated to zero quark mass and assuming r0 ≡ 0.5 fm.
The β-values were chosen in such a way that the lat-
tice extensions were approximately equal: L� 2.11 fm and
L � 2.12 fm, respectively. Also the bare twisted masses
scaled approximately: r0µ � 0.0285 and r0µ � 0.0283,
respectively.
The comparison of the observed quantities at two

β-values allows for a first look at discretisation errors.
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The outcome of these tests is reasonable, having in mind
the coarse lattice spacings: a � 0.176 fm on the 123 · 24
and a� 0.133 fm on 163 ·32. For instance, the results for
the pseudoscalar decay constant at zero quark mass are
fπr0 = 0.330(10) and fπr0 = 0.274(20) at β = 0.67 and
β = 0.74, respectively. These values also come close to the
phenomenological value (fπr0)phen = 0.308 [55]. The situ-
ation is somewhat worse for the pseudoscalar–vector mass
ratio, as Fig. 1 indicates. There are some noticeable scale
breaking effects, especially for pseudoscalar masses near
mπ = r

−1
0 . Of course, one has to bear in mind that the

ρ-meson mass in most of the points is quite close to the
cutoff.
The prerequisite for the extraction of quantities as, for

instance, fπ is the knowledge of the multiplicative renor-
malisation Z-factors for the currents. For obtaining the
Z-factors one can exploit the twist-angle dependence in
the plane of untwisted and twisted quark masses. As we
have shown in Sect. 3, this is a rather powerful method
for obtaining “finite” (according to perturbation theory)
Z-factor combinations as ZV , ZA and ZP /ZS . Remark-
ably consistent results could be obtained even with our
exploratory simulation data, without a dedicated choice of
simulation points for this purpose.
We have also attempted to describe our numerical

simulation data by a set of formulas derived from lattice
chiral perturbation theory. Although the values of the lat-
tice spacing and the quark mass are rather large in the
simulations, it turned out that these formulas describe the
behaviour of many physical quantities – even across the
phase transition – surprisingly well, at least on a qualita-
tive level. However, at the quantitative level our presently
available data do neither allow one to make a quantita-
tive extraction of the values of the ChPT parameters nor
can we answer the question whether the lattice artifacts
are well described by the lattice extension of ChPT. The
achieved qualitatively correct ChPT fits of our simulation
data makes us very optimistic that with new data we are
working on at present – at smaller lattice spacings and
small quarks masses – these questions will be answered. To
achieve this the experience with the fits in this paper will
be very helpful.
In Sect. 4 and the Appendix we used the NLO expres-

sions of ChPT including terms describingO(a) lattice arte-
facts. In general, metastable points near the first order
phase transition can be and have been included in the fits.
(Note that the fits in [50] are also based on metastable
points, as it has been discovered later.) Several setups were
tried and were shown to give satisfactory and consistent
fits. Nevertheless, there are probably some higher order ef-
fects (higher orders both in the quark mass and in lattice
spacing) which are non-negligible in our parameter range.
In addition, for the multi-parameter fits our data are not
precise enough and the data points are too few and not
optimally distributed in the parameter space. (In a dedi-
cated investigation the inclusion of partially quenched data
points could be very helpful.) Qualitatively speaking, the
ChPT fits presented here support the choice of the PCAC
quark mass as the preferred quark mass variable and show
that the O(a) effects are not overwhelming because a fit

without them is most of the time possible. Both these find-
ings agree with those of [50].
The ChPT fits are also helpful in estimating the min-

imal pion mass at a given lattice spacing. For instance,
the results at β = 0.74(a= 0.1326(70) fm) indicate that for
fixed aµ = 0.0075 we are above the end point of the first
order phase transition line (see e.g. the smooth behaviour
near µκcr in Fig. 4). The minimal value of the pion mass
in Figs. 10 and 13 is aboutmminπ (aµ= 0.0075)� 280MeV.
This is an upper bound for the absolute minimummminπ at
β = 0.74.
According to Table 10 the fits of the data with DBW2

gauge action suggest the following qualitative estimates for
the values of the relevant ChPT parameters:

2.9 GeV≤B ≤ 3.5 GeV ,

70MeV≤ F0 ≤ 85MeV ,

4.0≤ Λ3/F0 ≤ 8.0 ,

16.0≤ Λ4/F0 ≤ 19.0 . (63)

As Table 11 shows, the fits with the plaquette gauge action
are roughly consistent with these values. The estimates
of Λ3,4 are close to previous estimates in [50]: Λ3/F0 ≈ 8,
Λ4/F0 ≈ 21.
The values of theW -parameters describingO(a) effects

are not well determined and are in most cases consistent
with zero in our fits, if amPCACχ (or am̄PCACχ ) is taken as the

independent variable. Note that if one considers the rela-
tion of amPCACχ and am0, thenW andW

′ are quite visible.
An example is Fig. 2 in our previous proceedings contribu-
tion [56] whereW gives the difference of the slope between
positive and negative masses (W ′ turns out to be small).

Fig. 13. Fit of the charged pion mass squared from DBW2
data at non-zero aµ as described in the Appendix. The upper
(lower) curve belongs to β = 0.67 (β = 0.74)
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Table 11. Results of the ChPT fits with plaquette gauge action. The columns corres-
pond to different definitions of the currents for afπ and am

PCAC
χ . For the definitions

see Sect. 3.3. Upper part: fit with both positive and negative values of amPCACχ . Lower

part: fit with only positive values of amPCACχ

fvπ & m̄
PCAC
χ fπ & m̄

PCAC
χ fvπ & m

PCAC
χ fπ &m

PCAC
χ

B [GeV] 5.05 5.04 5.00 4.90
F0 [MeV] 104.9 104.2 88.3 86.6

L86 ·10
3 0.916 0.950 1.829 1.943

L54 ·10
3 1.637 1.709 2.850 3.027

W0 ·W ·10
−3 [MeV3] 31.5 28.5 2.9 6.6

W0 ·W̃ ·10
−3 [MeV3] 43.2 39.7 −3.6 −1.3

Λ3/F0 9.8 9.9 4.5 4.2
Λ4/F0 21.1 21.6 30.9 32.7

(
∑
dev2/σ2)/d.o.f. 2.08 2.19 4.25 4.16

B [GeV] 5.05 4.33 4.43 3.95
F0 [MeV] 98.5 93.9 90.5 85.8

L86 ·10
3 0.892 1.466 1.135 1.836

L54 ·10
3 1.848 2.705 2.099 3.155

Λ3/F0 13.6 9.4 10.1 6.5
Λ4/F0 22.5 29.5 24.4 34.0

(
∑
dev2/σ2)/d.o.f. 1.36 2.24 1.26 1.77

If the data at the two β-values are fitted separately,
as Table 10 shows, there is a remarkably good agreement
of the corresponding parameter values. This agrees with
expectations since the inclusion of O(a) terms in the for-
mulas reduces the discretisation errors in the physical
parameters. The consistency of the ChPT fits is sup-
ported by the agreement of the pion decay constant at
zero quark mass F0 with the value directly extracted from
the data in Sect. 3: f0(β = 0.74)/

√
2 � 76MeV. The esti-

mates of the universal low-energy scales Λ3,4 are within
the bounds of their phenomenological values given in [55]:
Λ3 = 0.6(+1.4,−0.4)GeV, Λ4 = 1.2(+0.7,−0.4)GeV that
is 2.3≤ Λ3/F0 ≤ 23.3, 9.3≤ Λ4/F0 ≤ 22.1.

Acknowledgements. We thank H. Perlt for providing us with

the perturbative estimates of the renormalisation constants of
the quark bilinears. The computer centers at DESY Hamburg,
NIC, DESY Zeuthen, NIC at Forschungszentrum Jülich and
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Appendix : Comparison with the fits
to plaquette action data

It is interesting to compare the results obtained from the
DBW2 gauge action with those presented in [14] result-
ing from the plaquette gauge action. As shown in the
previous sections, chiral perturbation theory for Wilson
lattice fermions (WChPT) offers a natural framework to
perform such a comparison. In fact, if NLO-WChPT is ap-
plicable, the parameters B0, F0 and Li entering (55)–(57)
should already take their physical (continuum) values: lat-

tice artefacts are expected to be taken into account by the
W -parameters. The latter depend, in general, on the lat-
tice action.
We remark that, having expressed all quantities (Fπ,

Gπ and mπ) as functions of m
PCAC
χ , the parameterW ′ [7,

15] disappears, and the pion mass can apparently go to zero
when mPCACχ → 0 and µ→ 0. However, one should keep
in mind that not all values of mPCACχ are accessible with

Fig. 14. Fit of the pion decay constant aFπ from DBW2 data
at non-zero aµ as described in the Appendix. The upper (lower)
curve belongs to β = 0.67 (β = 0.74)
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stable simulation points. This parametrisation allows one
to include in the ChPT fit also metastable points, where
bothmπ andm

PCAC
χ are lower than it would be possible in

a stable minimum of the effective potential. Since this is an
interesting check, we exploit this possibility and we include
also metastable points (from [14]) in the fit.
Given the larger amount of data points, we use a differ-

ent fit procedure from the one described in Sect. 4.1. The
χ2 is defined as for the effective variances method [51, 52,
54], but minimised through the Matlab implementation
of the Nelder–Mead simplex method. The variables a and
mPCACχ are taken as independent variables, andFπ ,Gπ and
mπ as dependent ones.
Besides using a fitting procedure different from the

one in the previous Sects. 4.1–4.2, our fits to the plaque-
tte gauge action data are restricted to data points with
non-zero twisted mass (aµ > 0) only. We also tried to use
different independent variables instead of amPCACχ , which
correspond to different possible definitions of the untwisted
component of the quark mass. It turned out that the
fit quality is improving if one considers am̄PCACχ defined
in (37). The difference implied by these changes compared
to the analysis in Sects. 4.1–4.2 – i.e. different fitting pro-
cedure, restricting the fit to aµ > 0 and using am̄PCACχ –
is illustrated by Figs. 13, 14 and 15 which have to be com-
pared to Figs. 9, 10, 11 and 12, respectively.
A consequence of considering am̄PCACχ instead of

amPCACχ is that ZA enters only indirectly – through the de-
termination of ω; therefore, we do not need to fit them. As
said before, the ZP is included in the B-factor. However,
when comparing different lattice spacings and different ac-
tions, we must allow for a β dependent ZP . In practice we
choose a reference β (corresponding to the smallest awhich

Fig. 15. Fit of a2Gπ from DBW2 data at non-zero aµ as de-
scribed in the Appendix. The upper (lower) curve belongs to
β = 0.67 (β = 0.74)

appears in the fit) and we fit a correction to ZP for each
different a. These are not given in the table, but they are
always between 0.95 and 1.35.
We summarise our results for the plaquette gauge ac-

tion data in Table 11. No statistical errors are quoted, since
the systematic errors dominate, as the comparison of the
results from the different fit setups shows. We perform fits

Fig. 16. Fit of the charged pion mass squared from plaquette
data at non-zero aµ. The upper , intermediate and lower curves
refer to β = 5.1, β = 5.2 and β = 5.3, respectively

Fig. 17. Fit of the pion decay constant aFπ from plaquette
data at non-zero aµ. The upper , intermediate and lower curves
refer to β = 5.1, β = 5.2 and β = 5.3, respectively
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Fig. 18. Fit of a2Gπ from plaquette data at non-zero aµ. The
upper , intermediate and lower curves refer to β = 5.1, β = 5.2
and β = 5.3, respectively

including all data (top part of Table 11) or only data at
positive mass (bottom part of Table 11). In this second case
theW -parameters are set to zero.
In Figs. 16, 17 and 18 the fits of the plaquette gauge

action data are presented. Similarly to the DBW2 fits,
the W ’s are very unstable, depending on the chosen sub-
set of data, and in general they are consistent with zero
within errors. The physical combinations L54 and L86 are
consistent with the values obtained by the DBW2 gauge
action.
We also performed fits of all data and imposing W =

W̃ = 0. The values of the physical quantities are still rea-
sonable, however the curves fit the data worse. We have
also attempted fits where all the NLO parameters are set to
zero (Li =W = W̃ = 0), or where only lattice artefacts are
included (Li = 0). Both these assumptions result in very
poor fits, essentially because they cannot reproduce the
curvature in Fπ and Gπ.
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